Exercice 27

- 2) On pose $f: x \mapsto x^2$.
 - Clairement $D_f = \mathbb{R}$. On montrerait facilement que le tableau de variations de f est :

x	$-\infty$		0		$+\infty$
f'(x)		_	0	+	
f(x)	+∞	×	0	7	+∞

• Cherchons les points fixes de f. Soit $\ell \in \mathbb{R}$. Alors

$$f(\ell) = \ell \iff \ell^2 = \ell$$
$$\iff \ell(\ell - 1) = 0$$
$$\iff \ell \in \{0, 1\}$$

On place le point 1 sur le tableau de variations de f:

x	$-\infty$		0		1		$+\infty$
f'(x)		_	0	+		+	
f(x)	$+\infty$	7	0	У	1	X	+∞

On distingue plusieurs cas selon la valeur de $u_0 \in \mathbb{R}_+$.

1. Si $u_0 = 0$ ou $u_0 = 1$, alors u_0 est un point fixe de f. Par récurrence immédiate,

$$u_n = (f \circ f \circ \cdots \circ f) (u_0) = u_0$$

donc $u_n \to u_0$.

2. Si $0 < u_0 < 1$, alors on remarque que J = [0, 1] vérifie

$$u_0 \in J$$
 et $f(J) = J \subset J$

si bien que la suite (u_n) est bien définie et pour tout $n, u_n \in J$. De plus, f est croissante sur J.

- De plus, $u_1 = u_0^2 \le u_0$ car $u_0 \le 1$. Ainsi, par récurrence immédiate, comme f est croissante, on a $u_{n+1} \le u_n$, donc (u_n) est décroissante.
- Comme (u_n) est minorée par 0, on en déduit qu'elle converge vers $\ell \in J$. De plus sa limite est un point fixe de f, donc $\ell \in \{0,1\}$. Or, comme (u_n) est décroissante, on a $\ell \leq u_n$, donc $\ell \leq u_0$. Ainsi, $\ell < 1$, donc $\ell = 0$. Ainsi, $u_n \to 0$.
- 3. Si $u_0 > 1$, alors on remarque que $J = [1, +\infty[$ vérifie

$$u_0 \in J$$
 et $f(J) = J \subset J$

si bien que la suite (u_n) est bien définie et pour tout $n, u_n \in J$. De plus, f est croissante sur J.

- De plus, $u_1 = u_0^2 \ge u_0$ car $u_0 \ge 1$. Ainsi, par récurrence immédiate, comme f est croissante, on a $u_{n+1} \ge u_n$, donc (u_n) est croissante.
- Supposons par l'absurde que (u_n) est majorée, alors comme elle est croissante, (u_n) converge, et sa limite est nécessairement un point fixe de f, à savoir $\ell \in \{0,1\}$. Or, $u_0 \le u_n$ donc en passant à la limite, $u_0 \le \ell$. Cependant, $\ell < u_0$, donc $\ell < \ell$. Contradiction. Ainsi, (u_n) est non majorée. Comme (u_n) est croissante, on en déduit que $u_n \to +\infty$.
- 3) On pose $f: x \mapsto x + \arctan x$.
 - Comme arctan est définie sur \mathbb{R} , on a $D_f = \mathbb{R}$. De plus, f est la somme de deux fonctions croissantes donc est croissante. On en déduit le tableau de variations suivant :

1

x	$-\infty$		$+\infty$
f(x)	$-\infty$	7	$+\infty$

• Cherchons les points fixes de f. Soit $\ell \in \mathbb{R}$.

$$f(\ell) = \ell \iff \ell + \arctan \ell = \ell$$
$$\iff \arctan \ell = 0$$

En appliquant tan à cette égalité, cela entraine $\ell=0$. Réciproquement, $\ell=0$ est clairement solution de arctan $\ell=0$. Ainsi, $f(\ell)=\ell \iff \ell=0$. On le rajoute dans le tableau :

x	$-\infty$		0		$+\infty$
f(x)	$-\infty$	7	0	7	+∞

• On remarque ensuite que $J = [0, +\infty[$ vérifie

$$u_0 = 1 \in J$$
 et $f(J) = J \subset J$

si bien que la suite (u_n) est bien définie et pour tout $n, u_n \in J$. De plus, f est croissante sur J.

• On calcule

$$u_1 = u_0 + \arctan u_0 = 1 + \arctan 1 = 1 + \frac{\pi}{4} \ge u_0$$

Ainsi, par récurrence immédiate et comme f est croissante sur J, $u_{n+1} \ge u_n$, donc (u_n) est croissante.

• Montrons que $u_n \to +\infty$. Supposons par l'absurde que (u_n) soit majorée. Alors comme (u_n) est croissante, elle converge. De plus sa limite serait un point fixe de f, donc nécessairement 0. Or, en passant à la limite dans $1 = u_0 \le u_n$, on obtient $1 \le 0$. Contradiction. Donc (u_n) est non majorée. Comme (u_n) est croissante, elle tend vers $+\infty$.

4) On pose $f: x \mapsto e^x - 1$.

• Comme exp est définie sur \mathbb{R} , on a $D_f = \mathbb{R}$. De plus, f est la somme de deux fonctions croissantes donc est croissante. On en déduit le tableau de variations suivant :

x	$-\infty$		$+\infty$
f(x)	$-\infty$	7	+∞

• Cherchons les points fixes de f. Soit $\ell \in \mathbb{R}$.

$$f(\ell) = \ell \iff e^{\ell} - 1 = \ell$$
$$\iff e^{\ell} - \ell - 1 = 0$$

Pour résoudre cette équation, on étudie $g: x \mapsto e^x - x - 1$ et on cherche où g s'annule. Tout d'abord, $D_g = \mathbb{R}$, et g est dérivable comme somme de fonctions dérivables. Pour tout $x \in \mathbb{R}$, on a $g'(x) = e^x - 1$, donc

$$g'(x) > 0 \iff e^x > 1$$

 $\iff x > 0$ car exp et ln sont croissantes

Ainsi,

x	$-\infty$		0		$+\infty$
g'(x)		_	0	+	
g(x)	+∞	X	0	7	+∞

Ce qui entraine que $g(\ell) = 0 \iff \ell = 0$. Finalement $\ell = 0$ est l'unique point fixe de f. On le rajoute dans le tableau de variations de f:

x	$-\infty$		0	$+\infty$
f(x)	$-\infty$	7	0	$+\infty$

• On remarque ensuite que $J=]-\infty,0]$ vérifie

$$u_0 = -1 \in J$$
 et $f(J) = J \subset J$

si bien que la suite (u_n) est bien définie et pour tout $n, u_n \in J$. De plus, f est croissante sur J.

- On calcule $u_1 = e^{u_0} 1 = e^{-1} 1 \ge u_0$. Ainsi, par récurrence immédiate et comme f est croissante sur J, on a $u_1 \ge u_0$, donc (u_n) est croissante.
- (u_n) est croissante et majorée par 0. Ainsi, (u_n) converge, et sa limite est nécessairement un point fixe de f (qui appartient à J), donc 0. Finalement, $u_n \to 0$.