Exercice 1 On ne donne que les solutions, pas le détail de la preuve.

- 4) Vrai
- 5) Vrai
- 6) Vrai
- 7) Vrai
- 8) Faux : on peut par exemple voir que $\varphi(-f) = \varphi(f)$ et donc $\varphi(-f) \neq -\varphi(f)$ en général. On peut par exemple prendre $f = \mathrm{id}$.

Exercice 8

• Montrons que $\operatorname{Ker} f \subset \operatorname{Ker} f^2$. Soit $x \in \operatorname{Ker} f$. Alors $f(x) = 0_E$, donc

$$f^2(x) = f(f(x)) = f(0_E) = 0_E$$
 car f est linéaire

Ainsi, $x \in \text{Ker } f^2$. D'où le résultat.

• Montrons que $\operatorname{Im} f^2 \subset \operatorname{Im} f$. Soit $y \in \operatorname{Im} f^2$. Alors il existe $x \in E$ tel que

$$y = f^2(x) = f(f(x))$$

En posant $x' = f(x) \in E$, on a donc y = f(x'). On en déduit que $y \in \text{Im } f$. D'où le résultat.

- Montrons la première équivalence.
 - Sens réciproque : supposons $\operatorname{Ker} f \cap \operatorname{Im} f = \{0\}$. Montrons que $\operatorname{Ker} f = \operatorname{Ker} f^2$. Par ce qui précède, on a déjà $\operatorname{Ker} f \subset \operatorname{Ker} f^2$. Il suffit donc de montrer que $\operatorname{Ker} f^2 \subset \operatorname{Ker} f$. Soit donc $x \in \operatorname{Ker} f^2$. On a

$$f^2(x) = f(f(x)) = 0$$

Ainsi, en posant y = f(x), on a d'une part $y \in \operatorname{Ker} f$. D'autre part, comme y = f(x), on a $y \in \operatorname{Im} f$. Ainsi, $y \in \operatorname{Ker} f \cap \operatorname{Im} f = \{0\}$ par hypothèse. D'où y = 0. On en déduit que f(x) = 0, càd $x \in \operatorname{Ker} f$. Par arbitraire sur x, $\operatorname{Ker} f^2 \subset \operatorname{Ker} f$.

- Sens direct : supposons $\operatorname{Ker} f = \operatorname{Ker} f^2$. Montrons que $\operatorname{Ker} f \cap \operatorname{Im} f = \{0\}$. Soit $y \in \operatorname{Ker} f \cap \operatorname{Im} f$. On a $y \in \operatorname{Im} f$, donc il existe $x \in E$ tel que y = f(x). De plus, $y \in \operatorname{Ker} f$ donc

$$f(y) = f(f(x)) = 0$$

Ainsi, $x \in \text{Ker } f^2$. Or, $\text{Ker } f^2 = \text{Ker } f$ donc $x \in \text{Ker } f$. Finalement, f(x) = 0 donc y = 0. Par arbitraire sur y, on a $\text{Ker } f \cap \text{Im } f = \{0\}$.

- Montrons la seconde équivalence.
 - Sens réciproque : supposons $\operatorname{Ker} f + \operatorname{Im} f = E$. Montrons que $\operatorname{Im} f = \operatorname{Im} f^2$. Par ce qui précède, on a déjà $\operatorname{Im} f^2 \subset \operatorname{Im} f$. Il suffit donc de montrer que $\operatorname{Im} f \subset \operatorname{Im} f^2$. Soit donc $y \in \operatorname{Im} f$. Alors il existe $x \in E$ tel que y = f(x). Or, comme $x \in E = \operatorname{Ker} f + \operatorname{Im} f$,

il existe
$$x_K \in \text{Ker } f \text{ et } x_I \in \text{Im } f \text{ tels que } x = x_K + x_I$$

Ainsi, comme f est linéaire,

$$f(x) = f(x_K + x_I) = f(x_K) + f(x_I) = 0_E + f(x_I) = f(x_I)$$

G. Peltier

On en déduit que $y = f(x) = f(x_I)$. Or, comme $x_I \in \text{Im } f$, il existe $z \in E$ tel que $x_I = f(z)$. Ainsi,

$$y = f(x_I) = f(f(z)) = f^2(z)$$

donc $y \in \text{Im } f^2$. Par arbitraire sur y, $\text{Im } f \subset \text{Im } f^2$.

– Sens direct : supposons $\operatorname{Im} f = \operatorname{Im} f^2$. Montrons que $\operatorname{Ker} f + \operatorname{Im} f = E$. Une inclusion est évidente. Montrons alors que $E \subset \operatorname{Ker} f + \operatorname{Im} f$. Soit $x \in E$. Étant donné $z \in E$, on peut écrire

$$x = x - z + z$$

On cherche alors z tel que $x - z \in \text{Ker } f$ et $z \in \text{Im } f$. Ainsi, cela revient à montrer que

$$\exists z \in \operatorname{Im} f \qquad x - z \in \operatorname{Ker} f$$

Or, $z \in \text{Im } f$ si et seulement s'il existe $x' \in E$ tel que z = f(x'). Ainsi,

$$\exists z \in \operatorname{Im} f \qquad x - z \in \operatorname{Ker} f$$

$$\iff \exists x' \in E \qquad x - f(x') \in \operatorname{Ker} f$$

$$\iff \exists x' \in E \qquad f(x - f(x')) = 0$$

$$\iff \exists x' \in E \qquad f(x) - f^2(x') = 0$$

$$\iff \exists x' \in E \qquad f(x) = f^2(x')$$

$$\iff f(x) \in \operatorname{Im} f^2$$

Or, $f(x) \in \text{Im } f = \text{Im } f^2$, donc la dernière assertion ci-dessus est vraie. Finalement, en posant $x' \in E$ tel que $f(x) = f^2(x')$, on a

$$x = \underbrace{x - f(x')}_{\in \operatorname{Ker} f} + \underbrace{f(x')}_{\in \operatorname{Im} f}$$

D'où $x \in \operatorname{Ker} f + \operatorname{Im} f$. Par arbitraire sur $x, E \subset \operatorname{Ker} f + \operatorname{Im} f$. D'où le résultat.

Exercice 11

- 1) Vu en TD.
- 2) Montrons que Im p = Ker q. Ici, on peut raisonner par équivalences. Pour tout $x \in E$,

$$x \in \operatorname{Ker} q \iff q(x) = 0$$

 $\iff (\operatorname{id}_E - p)(x) = 0$
 $\iff x - p(x) = 0$
 $\iff p(x) = x$
 $\iff x \in \operatorname{Im} p$ car p est un projecteur

D'où le résultat. Montrons maintenant que $\operatorname{Im} q = \operatorname{Ker} p$. Par la question 1), comme p est un projecteur, q aussi. Comme on a également $p = \operatorname{id}_E - q$, on peut échanger les rôles de p et q dans le raisonnement ci-dessus. Ainsi, $\operatorname{Ker} p = \operatorname{Im} q$.

G. Peltier 2/3

Exercice 12

Attention, il y a une erreur d'énoncé sur la deuxième assertion. Elle est corrigée sur la version en ligne du TD.

Première assertion, sens réciproque : montrons que Ker p = Ker q. Comme p, q jouent des rôles symétriques, il suffit de montrer que Ker $p \subset \text{Ker } q$. Soit donc $x \in \text{Ker } p$. Alors

$$q(x) = (q \circ p)(x) = q(p(x)) = q(0) = 0$$

d'où $x \in \text{Ker } q$. D'où le résultat.

Première assertion, sens direct : on suppose $\operatorname{Ker} p = \operatorname{Ker} q$. Comme p,q jouent des rôles symétriques, il suffit de montrer que $p \circ q = p$. Soit $x \in E$. Comme $E = \operatorname{Ker} q \oplus \operatorname{Im} q$, on peut écrire

$$x = x_K + x_I$$
 avec $x_K \in \operatorname{Ker} q$ et $x_I \in \operatorname{Im} q$

Alors

$$(p \circ q)(x) = p(q(x_K + x_I))$$
$$= p(x_I)$$

Or.

$$p(x) = p(x_K + x_I)$$

$$= p(x_K) + p(x_I)$$

$$= 0 + p(x_I) \qquad \operatorname{car} x_K \in \operatorname{Ker} q = \operatorname{Ker} p$$

D'où $p(x) = p \circ q(x)$.

Deuxième assertion, sens réciproque : montrons que $\operatorname{Im} p = \operatorname{Im} q$. Comme p,q jouent des rôles symétriques, il suffit de montrer que $\operatorname{Im} p \subset \operatorname{Im} q$. Soit donc $y \in \operatorname{Im} p$. Alors il existe $x \in E$ tel que y = p(x). Dans ce cas,

$$y = p(x) = (q \circ p)(x) = q(p(x))$$

donc $y \in \text{Im } q$. D'où le résultat.

Deuxième assertion, sens direct : on suppose $\operatorname{Im} p = \operatorname{Im} q$. Comme p,q jouent des rôles symétriques, il suffit de montrer que $p \circ q = q$. Soit donc $y \in E$. Comme $E = \operatorname{Ker} q \oplus \operatorname{Im} q$, on peut écrire

$$y = y_K + y_I$$
 avec $y_K \in \text{Ker } q$ et $y_I \in \text{Im } q$

Alors d'une part,

$$q(y) = y_I$$

et d'autre part,

$$(p \circ q)(y) = p(q(y_K + y_I)) = p(y_I)$$

Or, $y_I \in \text{Im } q = \text{Im } p$, donc $p(y_I) = y_I$. Ainsi

$$(p \circ q)(y) = y_I$$

Par arbitraire sur y, on a donc $p \circ q = q$.

G. Peltier 3/3