DS n°7: corrigé (142 pts ramené sur 100, ±3 pts pour le soin*)

Exercice: Table de groupe (27.5 pts)

1) Quel est l'élément neutre de G? Justifier. (3.5 pts)

On lit sur la table que

$$\forall x \in G \qquad ix = xi = x$$

donc i est élément neutre de G.

2) Déterminer $i^{-1}, j^{-1}, k^{-1}, \ell^{-1}$. (3.5 pts)

Par la question précédente, i est élément neutre de G. Or, on lit sur la table que $j^2 = i$, donc j est inversible et $j^{-1} = j$.

De même, $k^{-1} = k$ et $\ell^{-1} = \ell$.

- 3) On cherche à déterminer le produit jk.
 - a) On suppose que jk = j. Déduire une contradiction. (3.5 pts)

Si jk = j, alors en multipliant par j^{-1} à gauche, on a k = i. C'est absurde car i, j, k, ℓ sont distincts par hypothèse.

b) Même question avec jk = k. (3.5 pts)

Si jk = k, alors en multipliant par k^{-1} à droite, on a j = i. Comme à la question précédente, c'est une contradiction.

c) Peut-on avoir jk = i? Conclure. (7.5 pts)

Supposons par l'absurde que jk=i. Alors k serait l'inverse de j, i.e. $j^{-1}=k$. Cependant, $j^{-1}=j\neq k$ par la question 2. Contradiction. Finalement, $jk\neq i$. Comme $jk\in G$ et que $jk\notin \{i,j,k\}$ par ce qui

précède, on a nécessairement $jk = \ell$

4) Recopier la table et la compléter (sans justifier). (5 pts)

	i	j	k	ℓ
i	i	j	k	ℓ
j	j	i	ℓ	k
k	k	ℓ	i	j
ℓ	ℓ	k	j	i

 $^{^*}$ les points de soin bonus ne peuvent dépasser 10% de la note : pour avoir 3 points de soin, il faut au minimum avoir 30 points sur 140.

Exercice : Racines p-ièmes de I_n (37.5 pts)

Soit $n, p \in \mathbb{N}$ avec $n \geq 2$ et $p \geq 2$. On pose :

$$\mathcal{R}_p := \{ A \in \mathcal{M}_n(\mathbb{R}) \mid A^p = I_n \}$$

On rappelle qu'on note $GL_n(\mathbb{R})$ le sous-ensemble des matrices inversibles.

1) \mathcal{R}_p est-il un sous-anneau de $\mathcal{M}_n(\mathbb{R})$? (4 pts)

Supposons par l'absurde que \mathcal{R}_p soit un sous-anneau de $\mathcal{M}_n(\mathbb{R})$. On a immédiatement que $I_n^p = I_n$, donc $I_n \in \mathcal{R}_p$. Comme \mathcal{R}_p est un sous-anneau, on en déduit que

$$I_n - I_n = 0 \in \mathcal{R}_p$$

ce qui est absurde car $0^p = 0 \neq I_n$. Contradiction. Donc \mathcal{R}_p n'est pas un sous-anneau de $\mathcal{M}_n(\mathbb{R})$.

2) Soit $A \in \mathcal{R}_p$ et $B \in GL_n(\mathbb{R})$. Montrer que $B^{-1}AB \in \mathcal{R}_p$. (5 pts)

On a

$$(B^{-1}AB)^{p} = \underbrace{B^{-1}AB \times B^{-1}AB \times \cdots \times B^{-1}AB}_{p \text{ fois}}$$

$$= B^{-1}\underbrace{AA \cdots A}_{p \text{ fois}}B$$

$$= B^{-1}A^{p}B$$

$$= B^{-1}I_{n}B \qquad \text{car } A \in \mathcal{R}_{p}$$

$$= B^{-1}B$$

$$= I_{n}$$

On en déduit que $B^{-1}AB \in \mathcal{R}_n$.

3) Soit $A \in \mathcal{R}_p$. Montrer que $A \in GL_n(\mathbb{R})$ et déterminer A^{-1} . Montrer que $A^{-1} \in \mathcal{R}_p$. (7.5 pts)

On a $A^p = I_n$ donc $A \times A^{p-1} = I_n$ (on peut écrire A^{p-1} car $p-1 \ge 0$). Ainsi, A est inversible avec $A^{-1} = A^{p-1}$. (Il suffit de ne vérifier qu'un seul sens pour les matrices, cf cours).

Vérifions que $A^{-1} \in \mathcal{R}_p$. On a

$$(A^{-1})^p = (A^{p-1})^p$$

$$= A^{p(p-1)}$$

$$= (A^p)^{p-1}$$

$$= (I_n)^{p-1} = I_n \qquad \operatorname{car} A \in \mathcal{R}_p$$

Ainsi, $A^{-1} \in \mathcal{R}_p$.

4) Déterminer toutes les matrices de $\mathcal{R}_p \cap D_n(\mathbb{R})$, où $D_n(\mathbb{R})$ désigne le sous-ensemble des matrices diagonales. (10 pts)

Soit $A \in D_n(\mathbb{R})$. On pose

$$A = \left(\begin{array}{ccc} \alpha_1 & & 0 \\ & \ddots & \\ 0 & & \alpha_n \end{array}\right)$$

avec $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$. Alors, comme A est diagonale,

$$A \in \mathcal{R}_{p}$$

$$\iff A^{p} = I_{n}$$

$$\iff \begin{pmatrix} \alpha_{1}^{p} & 0 \\ & \ddots & \\ 0 & \alpha_{n}^{p} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix}$$

$$\iff \forall i \in [1, n] \quad \alpha_{i}^{p} = 1$$

On distingue deux cas:

• Si $p \in 2\mathbb{N} + 1$, alors pour tout i, $\alpha_i^p = 1 \iff \alpha_i = 1$. Ainsi

$$\mathcal{R}_p \cap D_n(\mathbb{R}) = \{I_n\}$$

• Si $p \in 2\mathbb{N}$, alors pour tout $i, \, \alpha_i^p = 1 \iff \alpha_i \in \{\pm 1\}$. Ainsi,

$$\mathcal{R}_p \cap D_n(\mathbb{R}) = \{ \operatorname{diag}(\alpha_1, \dots, \alpha_n) \mid \alpha_1, \dots, \alpha_n \in \{-1, 1\} \}$$

5) Soit q un entier naturel supérieur ou égal à 2, et d le plus grand commun diviseur de p et q. Montrer que $\mathcal{R}_p \cap \mathcal{R}_q = \mathcal{R}_d$. (11 pts)

On procède par double inclusion. Soit $A \in \mathcal{R}_d$. On pose $k, \ell \in \mathbb{N}$ tels que

$$d = pk$$
 $d = q\ell$

Alors, comme $A^d = I_n$, on a

$$A^p = A^{dk} = (A^d)^k = I_n^k = I_n$$

et de même $A^q = I_n$. Ainsi $A \in \mathcal{R}_p \cap \mathcal{R}_q$. Par arbitraire sur $A, \mathcal{R}_d \subset \mathcal{R}_p \cap \mathcal{R}_q$.

Réciproquement, soit $A \in \mathcal{R}_p \cap \mathcal{R}_q$. Par le théorème de Bézout-Bachet, il existe $u, v \in \mathbb{Z}$ tels que pu + qv = d. Alors

$$A^{d} = A^{pu+qv} = (A^{p})^{u}(A^{q})^{v} = I_{n}^{u}I_{n}^{v} = I_{n}$$

D'où $A \in \mathcal{R}_d$. On en déduit que $\mathcal{R}_p \cap \mathcal{R}_q \subset \mathcal{R}_d$. Finalement, $\mathcal{R}_p \cap \mathcal{R}_q = \mathcal{R}_d$.

Problème : polynômes de Tchebyshev (77 pts)

On définit une suite de polynômes $(T_n)_{n>0}$ par :

$$T_0 = 1 T_1 = X$$

$$\forall n \in \mathbb{N} T_{n+2} = 2XT_{n+1} - T_n$$

Partie A - Généralités (20 pts)

1) Calculer T_2 , T_3 , T_4 et T_5 . (3 pts)

$$T_2 = 2XT_1 - T_0 = 2X^2 - 1$$

$$T_3 = 2XT_2 - T_1 = 2X(2X^2 - 1) - X = 4X^3 - 3X$$

$$T_4 = (...) = 8X^4 - 8X^2 + 1$$

$$T_5 = (...) = 16X^5 - 20X^3 + 5X$$

2) Montrer que pour tout $n \in \mathbb{N}$, $T_n(1) = 1$. (4 pts)

On procède par récurrence double sur n.

- On a $T_0(1) = 1$ et $T_1(1) = 1$ donc la propriété est vérifiée pour les rangs n = 0 et n = 1.
- Étant donné un $n \in \mathbb{N}$, supposons la propriété vraie pour les rangs n et n+1, et montrons qu'elle l'est au rang n+2. Comme

$$T_{n+2} = 2XT_{n+1} - T_n$$

on en déduit que

$$T_{n+2}(1) = 2T_{n+1}(1) - T_n(1)$$

= $2 \times 1 - 1$ par hypothèse de récurrence
= 1

D'où la propriété est vraie au rang n+2.

Finalement $T_n(1) = 1$ pour tout $n \in \mathbb{N}$.

3) Déterminer le degré de T_n . (5.5 pts)

Montrons par récurrence double sur $n \in \mathbb{N}$ que deg $T_n = n$.

- On a immédiatement $\deg T_0 = 0$ et $\deg T_1 = 1$, donc la propriété est vraie pour n = 0 et n = 1.
- Étant donné un $n \in \mathbb{N}$, supposons la propriété vraie pour les rangs n et n+1, et montrons qu'elle l'est au rang n+2.

$$\deg T_{n+2} = \deg (2XT_{n+1} - T_n)$$

Or, par hypothèse de récurrence,

$$\deg(2XT_{n+1}) = \deg X + \deg T_{n+1} = 1 + n + 1 = n + 2$$
$$\deg T_n = n$$

Ainsi, ces deux polynômes étant de degrés distincts, on a

$$\deg T_{n+2} = \max(\deg(2XT_{n+1}), \deg(T_n)) = n+2$$

D'où la propriété est vraie au rang n + 2.

Finalement $deg T_n = n$ pour tout $n \in \mathbb{N}$.

4) Déterminer le coefficient dominant de T_n pour tout $n \geq 1$. (7.5 pts)

Montrons par récurrence double sur $n \in \mathbb{N}^*$ que le coefficient dominant de T_n est 2^{n-1} .

- Les coefficients dominants de T_1 et T_2 sont respectivement $1 = 2^{1-1}$ et $2 = 2^{2-1}$, donc la propriété est vraie aux rangs n = 1 et n = 2.
- Étant donné un $n \in \mathbb{N}^*$, supposons la propriété vraie pour les rangs n et n+1, et montrons qu'elle l'est au rang n+2. On a $T_{n+2}=2XT_{n+1}-T_n$. Or, par la question précédente,

$$\deg T_n = n < n + 2 = \deg(T_{n+2})$$

Ainsi, le coefficient dominant de T_{n+2} est le même que celui de $2XT_{n+1}$. Or, par hypothèse de récurrence, le coefficient dominant de T_{n+1} est 2^n , donc celui de $2XT_{n+1}$ est 2^{n+1} . On en déduit que T_{n+2} a pour coefficient dominant 2^{n+2-1} : la propriété est vraie au rang n+2.

Finalement, pour tout $n \ge 1$, le coefficient dominant de T_n est 2^{n-1} .

Partie B – Racines de T_n (32 pts)

5) Montrer que pour tout $n \in \mathbb{N}$ et pour tout $x \in \mathbb{R}$, on a

$$\cos((n+2)x) = 2(\cos x)\cos((n+1)x) - \cos(nx)$$

(5 pts)

On sait que pour tous $p, q \in \mathbb{R}$,

$$\cos p \cos q = \frac{1}{2} \left(\cos(p+q) + \cos(p-q) \right)$$

Avec p = (n+1)x et q = x, on en déduit que

$$\cos((n+1)x)\cos x = \frac{1}{2}\left[\cos((n+2)x) + \cos(nx)\right]$$

D'où

$$\cos((n+2)x) = 2(\cos x)\cos((n+1)x) - \cos(nx)$$

6) En déduire que pour tout $(n, \theta) \in \mathbb{N} \times \mathbb{R}$, $T_n(\cos \theta) = \cos(n\theta)$. (6 pts)

Montrons par récurrence double sur $n \in \mathbb{N}$ que pour tout $\theta \in \mathbb{R}$, on a $T_n(\cos \theta) = \cos(n\theta)$.

• Soit $\theta \in \mathbb{R}$. Alors

$$T_0(\cos\theta) = 1 = \cos(0\theta)$$

$$T_1(\cos\theta) = \cos\theta = \cos(1\theta)$$

donc la propriété est vraie aux rangs n=0 et n=1.

• Étant donné un $n \in \mathbb{N}$, supposons la propriété vraie pour les rangs n et n+1, et montrons qu'elle l'est au rang n+2. Soit $\theta \in \mathbb{R}$. Comme $T_{n+2}=2XT_{n+1}-T_n$, on a

$$T_{n+2}(\cos \theta) = 2(\cos \theta)T_{n+1}(\cos \theta) - T_n(\cos \theta)$$
$$= 2(\cos \theta)\cos((n+1)\theta) - \cos(n\theta)$$
$$= \cos((n+2)\theta)$$

par la question précédente. Donc la propriété est vraie au rang n+2.

Finalement, la propriété est vraie pour tout $n \in \mathbb{N}$.

7) Résoudre l'équation

$$\cos(nx) = 0$$

d'inconnue $x \in [0, \pi]$. (6 pts)

Soit $x \in [0, \pi]$. Si n = 0, il n'y a pas de solution car $\cos(0x) = \cos(0) = 1$. Si $n \ge 1$, alors

$$\cos(nx) = 0$$

$$\iff \exists k \in \mathbb{Z} \quad nx = k\pi + \frac{\pi}{2}$$

$$\iff \exists k \in \mathbb{Z} \quad x = \frac{k}{n}\pi + \frac{\pi}{2n}$$

Cherchons les solutions qui sont dans $[0,\pi]$. Pour tout $k \in \mathbb{Z}$,

$$0 \le \frac{k}{n}\pi + \frac{\pi}{2n} \le \pi$$

$$\iff 0 \le \frac{k}{n} + \frac{1}{2n} \le 1$$

$$\iff 0 \le k + \frac{1}{2} \le n$$

$$\iff -\frac{1}{2} \le k \le n - \frac{1}{2}$$

On voit que seules les valeurs de k dans [0, n-1] conviennent. Ainsi

$$\boxed{\mathcal{S} = \left\{ \frac{k}{n}\pi + \frac{\pi}{2n} \mid k \in \llbracket 0, n-1 \rrbracket \right\}}$$

8) En déduire que T_n admet n racines distinctes dans [-1,1], puis déterminer toutes ses racines dans \mathbb{C} . (8 pts)

On pose pour tout $k \in [0, n-1]$

$$x_k := \frac{k}{n}\pi + \frac{\pi}{2n}$$

Par la question 7, pour tout tel k, on a $\cos(nx_k) = 0$, donc par la question 6, $T_n(\cos x_k) = 0$. Ainsi, $\cos x_k$ est racine de T_n et $\cos x_k \in [-1, 1]$. Cela représente n valeurs car $k \in [0, n-1]$.

Montrons que ces valeurs sont bien distinctes. Pour tout $k \in [0, n-2]$, on a

$$0 \le x_k < x_{k+1} \le \pi$$

et comme cos est strictement décroissante sur $[0, \pi]$, on en déduit que

$$\cos x_k > \cos x_{k+1}$$

Ainsi, la famille $(\cos x_k)_{0 \le k \le n-1}$ est strictement décroissante : ses valeurs sont bien distinctes. On a donc n racines distinctes de T_n dans [-1,1].

Enfin, comme deg $T_n = n$ par la question 3, on en déduit que T_n admet exactement n racines comptées avec multiplicité. Par ce qui précède, on a trouvé n racines distinctes de T_n dans [-1,1]. Ainsi, on a trouvé toutes les racines de T_n .

9) (bonus, ne sert pas pour la suite) Factoriser T_n dans $\mathbb{R}[X]$. (7 pts)

On a vu à la question précédente que T_n admet n racines distinctes dans \mathbb{C} , à savoir x_0, \ldots, x_{n-1} définies par

$$x_k := \frac{k}{n}\pi + \frac{\pi}{2n} \qquad \text{avec } k \in [0, n-1]$$

Comme x_0, \ldots, x_{n-1} sont réels, T_n admet n racines distinctes dans \mathbb{R} , donc est scindé à racines simples sur \mathbb{R} . Distinguons deux cas.

- Si n = 0, alors $T_n = T_0 = 1$ est déjà factorisé.
- Si $n \ge 1$, comme le coefficient dominant de T_n est 2^{n-1} par la question 4, on a

$$T_n = 2^{n-1}(X - x_0)(X - x_1)\dots(X - x_n)$$

Partie C – Relation arithmétique (25 pts)

10) Soit $P_1, P_2 \in \mathbb{R}[X]$ tels que :

$$\forall \theta \in \mathbb{R}$$
 $P_1(\cos \theta) = P_2(\cos \theta)$

Montrer que $P_1 = P_2$. (6 pts)

Pour tout $\theta \in \mathbb{R}$, on a

$$P_1(\cos\theta) - P_2(\cos\theta) = 0$$

Ainsi, Le polynôme $P_1 - P_2$ admet $\cos \theta$ pour racine, et ce pour tout $\theta \in \mathbb{R}$. Or $\cos(\mathbb{R}) = [-1, 1]$, si bien que $P_1 - P_2$ admet tout élément de [-1, 1] pour racine.

En particulier, $P_1 - P_2$ admet une infinité de racines. Alors, nécessairement, $P_1 - P_2 = 0$, c'est-à-dire $P_1 = P_2$.

11) Soit $m, n \in \mathbb{N}$ tels que $0 \le m \le n$. Montrer que

$$T_m T_n = \frac{1}{2} (T_{n+m} + T_{n-m})$$

(8 pts)

Soit $\theta \in \mathbb{R}$. Si on montre que

$$(T_m T_n)(\cos \theta) = \left[\frac{1}{2} (T_{n+m} + T_{n-m})\right] (\cos \theta)$$

alors la question précédente permet de conclure. Or, par la question 6, on a

$$(T_m T_n)(\cos \theta) = T_m(\cos \theta)T_n(\cos \theta)$$

= $\cos(m\theta)\cos(n\theta)$

$$\left[\frac{1}{2}(T_{n+m} + T_{n-m})\right](\cos\theta) = \frac{1}{2}\cos((n+m)\theta) + \frac{1}{2}\cos((n-m)\theta)$$

$$= \frac{1}{2}\cos(n\theta)\cos(m\theta) - \frac{1}{2}\sin(n\theta)\sin(m\theta)$$

$$+ \frac{1}{2}\cos(n\theta)\cos((-m)\theta) - \frac{1}{2}\sin(n\theta)\sin((-m)\theta)$$

$$= \cos(n\theta)\cos(m\theta)$$

Finalement, on a bien l'égalité voulue, d'où

$$T_n T_m = \frac{1}{2} (T_{n+m} + T_{n-m})$$

12) On suppose que $m, n \in \mathbb{N}$ sont tels que m < n < 3m. On suppose que Q et R sont respectivement le quotient et le reste de la division euclidienne de T_n par T_m . Montrer que

$$Q = 2T_{n-m} \qquad \text{et} \qquad R = -T_{|n-2m|}$$

(11 pts)

Vérifions que $T_n = T_m Q + R$. On distingue deux cas :

1) Si $2m \le n < 3m$, alors $R = -T_{n-2m}$. Alors

$$T_m Q + R = 2T_{n-m} T_m - T_{n-2m}$$

= $2 \times \frac{1}{2} (T_{n-m+m} + T_{n-m-m}) - T_{n-2m}$ car $n - m \ge m$
= T_n

2) Si $m < n \le 2m$, alors $R = -T_{2m-n}$. Alors

$$T_m Q + R = 2T_m T_{n-m} - T_{2m-n}$$

= $2 \times \frac{1}{2} (T_{m+n-m} + T_{m-(n-m)}) - T_{2m-n}$ car $m \ge n - m$
= T_n

Ainsi, dans tous les cas, on a bien $T_n = T_m Q + R$. De plus, par la question 3,

$$\deg R = \deg(T_{|n-2m|}) = |n-2m|$$
$$\deg T_m = m$$

Et comme m < n < 3m, on a

$$-m < n - 2m < m$$

donc |n-2m| < m. D'où deg $R < \deg T_m$. Ainsi, $T_n = T_m Q + R$ est bien la division euclidienne de T_n par T_m .