DEVOIR MAISON N°2

APPLICATIONS, RELATIONS, FONCTIONS

Exercice 1

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto ax + b$$

Si a=0, alors f(x)=b. f n'est pas injective car f(0)=b=f(1) et $0\ne 1$. De plus en posant y=b-1, on voit que l'équation f(x)=y n'a pas de solution. Donc f n'est pas surjective.

Si $a \neq 0$, alors pour tout $y \in \mathbb{R}$, on résout l'équation f(x) = y d'inconnue $x \in \mathbb{R}$:

$$f(x) = y \iff ax + b = y$$

 $\iff x = \frac{y - b}{a}$

il y a donc existence et unicité d'une solution. Ainsi, f est bijective, donc injective et surjective.

$$g: \mathbb{R}_+ \to \mathbb{N}$$
$$x \mapsto |x|$$

On a $g(0)=0=g\left(\frac{1}{2}\right)$ donc g n'est pas injective. Soit $y\in\mathbb{N}$. Alors en posant $x=y\in\mathbb{R}_+$, on a g(x)=y, donc g est surjective.

$$h: \mathbb{R}^* \to \mathbb{R}$$
$$x \mapsto \ln|x|$$

On a h(1) = 0 = h(-1) donc h n'est pas injective. Soit $y \in \mathbb{R}$. Alors en posant $x = e^y \in \mathbb{R}^*$, on a h(x) = y, donc h est surjective.

$$u: \mathbb{R}_+^* \times \mathbb{R} \to \mathbb{C}$$

 $(r, \theta) \mapsto re^{i\theta}$

On a $u(1,0)=1e^0=1e^{i2\pi}=u(1,2\pi)$, donc u n'est pas injective. On affirme que l'équation $u(r,\theta)=0$ d'inconnue $(r,\theta)\in\mathbb{R}_+^*\times\mathbb{R}$ n'a pas de solution. En effet, supposons par l'absurde qu'un couple (r,θ) soit solution. Alors :

$$u(r,\theta) = 0 \implies re^{i\theta} = 0$$

 $\implies e^{i\theta} = 0$ $car r > 0$
 $\implies |e^{i\theta}| = |0|$
 $\implies 1 = 0$

ce qui est absurde. Donc *u* n'est pas surjective.

On pourrait accepter une rédaction disant que le complexe z=0 n'admet pas de forme trigonométrique, donc n'a pas d'antécédent par u.

Exercice 2

1) Montrer que $A \subset f^{-1}(f(A))$. Montrer que l'inclusion réciproque est vraie si f injective.

Soit $x \in A$. Montrons que $x \in f^{-1}(f(A))$. Par définition de f(A), on a $f(x) \in f(A)$. Or, cela implique que $x \in f^{-1}(f(A))$, à nouveau par définition 1 . D'où le résultat par arbitraire sur x.

Supposons maintenant que f est injective. Soit $x \in f^{-1}(f(A))$. Montrons que $x \in A$. Tout d'abord, $f(x) \in f(A)$. Donc par définiton, il existe $y \in A$ tel que f(x) = f(y). Or, f est injective, donc x = y. Comme $y \in A$, on a également $x \in A$. D'où $f^{-1}(f(A)) \subset A$ par arbitraire sur x.

2) Montrer que $f(f^{-1}(B)) \subset B$. Montrer que l'inclusion réciproque est vraie si f surjective.

Soit $y \in f(f^{-1}(B))$. Montrons que $y \in B$. Tout d'abord, par définition, il existe $x \in f^{-1}(B)$ tel que y = f(x). Or, comme $x \in f^{-1}(B)$, on a $f(x) \in B$. Ainsi, $y \in B$. D'où le résultat.

Supposons maintenant que f est surjective. Soit $y \in B$. Montrons que $y \in f(f^{-1}(B))$. Comme f est surjective, il existe $x \in E$ tel que f(x) = y. Comme $f(x) \in B$, on a $x \in f^{-1}(B)$. Ainsi, $y = f(x) \in f(f^{-1}(B))$. D'où le résultat par arbitraire sur y.

Exercice 3

1) Montrer que \mathcal{R} est une relation d'équivalence.

Soient $x, y, z \in \mathbb{R}$.

- On a f(x) = f(x), donc $x \mathcal{R} x$. Ainsi \mathcal{R} est réflexive.
- Si $x\mathcal{R}y$, alors f(x) = f(y), donc f(y) = f(x) et on a $y\mathcal{R}x$. Ainsi \mathcal{R} est symétrique.
- Si xRy et yRz, alors f(x) = f(y) et f(y) = f(z). Donc f(x) = f(z) et on a xRz. Ainsi, R est transitive.

Finalement, \mathcal{R} est une relation d'équivalence.

2) Si $f(x) = x^2$, déterminer tous les éléments de la classe d'équivalence de x.

Soient $x, y \in \mathbb{R}$. Alors

$$y \in [x] \iff y\mathcal{R}x$$

 $\iff y^2 = x^2$
 $\iff y = x \text{ ou } y = -x$

Ainsi, $[x] = \{-x, x\}.$

3) Si $f(x) = \cos x$, déterminer tous les éléments de la classe d'équivalence de x.

Soient $x, y \in \mathbb{R}$. Alors

$$y \in [x] \iff y\mathcal{R}x$$

 $\iff \cos(y) = \cos(x)$
 $\iff y \equiv x[2\pi] \text{ ou } y \equiv -x[2\pi]$

Ainsi,

$$[x] = \{ y \in \mathbb{R} \mid y \equiv x [2\pi] \text{ ou } y \equiv -x [2\pi] \}$$

G. Peltier 2/6

^{1.} On a $f(x) \in B$ avec B = f(A), donc $x \in f^{-1}(B) = f^{-1}(f(A))$

Exercice 4

1) Montrer que \leq est une relation d'ordre, et que l'ordre est total.

Soient $x, y, z \in \mathbb{R}^*$.

- On a $\frac{1}{x} \le \frac{1}{x}$, donc $x \le x$. Ainsi, \le est réflexive.
- Si $x \leq y$ et $y \leq x$ alors $\frac{1}{x} \leq \frac{1}{y}$ et $\frac{1}{y} \leq \frac{1}{x}$, donc $\frac{1}{x} = \frac{1}{y}$, si bien que x = y. Ainsi \leq est antisymétrique.
- Si $x \le y$ et $y \le z$, alors $\frac{1}{x} \le \frac{1}{y}$ et $\frac{1}{y} \le \frac{1}{z}$. Donc $\frac{1}{x} \le \frac{1}{z}$ et on a $x \le z$. Ainsi, \le est transitive.

Finalement, \leq est une relation d'ordre

Montrons enfin que l'ordre est total. Soient $x,y \in \mathbb{R}^*$. Alors comme \leq définit un ordre total, on a $x \leq y$ ou $y \leq x$. En passant à l'inverse, on en déduit que $\frac{1}{x} \geq \frac{1}{y}$ ou $\frac{1}{y} \geq \frac{1}{x}$, donc $y \leq x$ ou $x \leq y$. Ainsi, \leq définit un ordre total.

2) Donner un majorant et un minorant de l'ensemble $\{-2, -1, 1, 2\}$ pour \leq .

On pose $A = \{-2, -1, 1, 2\}$. Soit $M \in \mathbb{R}^*$. M est un majorant de A pour \leq si

$$\forall x \in A \quad x \leq M$$

ou encore

$$\forall x \in A \quad \frac{1}{x} \le \frac{1}{M}$$

Il faut donc choisir M tel que

$$\frac{1}{M} \ge \max\left(\frac{1}{-2}, \frac{1}{-1}, \frac{1}{1}, \frac{1}{2}\right) = 1$$

On peut donc prendre $M = \frac{1}{2}$ (ou même M = 1).

De même, m est un minorant de A pour \leq si

$$\frac{1}{m} \le \min\left(\frac{1}{-2}, \frac{1}{-1}, \frac{1}{1}, \frac{1}{2}\right) = -1$$

On peut donc prendre $m = -\frac{1}{2}$ (ou même m = -1).

3) Montrer que [1,2] admet un plus petit et un plus grand élément pour \leq et les déterminer.

Montrons que M = 1 est le plus grand élément de [1,2] pour \leq . Soit $x \in [1,2]$. On a $M = 1 \leq x$ donc

$$\frac{1}{x} \le \frac{1}{M}$$

ce qui entraine $x \leq M$. Par arbitraire sur x, on en déduit que M = 1 est un majorant de [1,2]. Or, $M \in [1,2]$, donc M est bien le maximum de [1,2] pour \leq . De même, on montre que m = 2 est un minorant de [1,2] pour \leq .

G. Peltier

Exercice 5

$$f_0: x \mapsto \operatorname{sh}(x)\operatorname{ch}(x) \qquad f_1: x \mapsto x^{2x} \qquad f_2: x \mapsto \sqrt{\arctan x} \qquad f_3: x \mapsto (x \ln x)^{-3/2} \qquad f_4: x \mapsto x e^x \ln x$$

$$f_0'(x) = \operatorname{ch}^2 x + \operatorname{sh}^2 x \qquad (\neq 1 \text{ a priori } !!)$$

$$f_1(x) = e^{2x \ln x} \Longrightarrow f_1'(x) = 2(\ln x + 1) e^{2x \ln x}$$

$$f_2'(x) = \frac{1}{2\sqrt{\arctan x}} \times \frac{1}{1 + x^2}$$

$$f_3'(x) = -\frac{3}{2}(x \ln x)^{-\frac{5}{2}} \times (\ln x + 1)$$

$$f_4'(x) = 1 \cdot e^x \ln x + x e^x \ln x + x e^x \cdot \frac{1}{x}$$

$$= e^x (x \ln x + \ln x + 1)$$

Exercice 6

$$F: x \mapsto \frac{\ln x}{x}$$

La fonction ln est définie sur \mathbb{R}_+^* et la fonction inverse sur \mathbb{R}^* . Ainsi, $D_F = \mathbb{R}_+^*$. F est dérivable sur \mathbb{R}_+^* comme produit de fonctions dérivables sur \mathbb{R}_+^* . Pour tout $x \in \mathbb{R}_+^*$, on a

$$F'(x) = \frac{\frac{1}{x} \times x - \ln x}{x^2} = \frac{1 - \ln x}{x^2}$$

Alors

$$F'(x) > 0 \iff \frac{1 - \ln x}{x^2} > 0$$

 $\iff 1 - \ln x > 0$
 $\iff \ln x < 1$
 $\iff 0 < x < e$ par stricte croissance de exp et de $\ln x$

Ainsi,

x	0		e		+∞
F'(x)		+		_	
F(x)	-∞	7	e^{-1}	\searrow	0

Justifions les limites. Par croissances comparées :

$$\frac{\ln x}{x} \xrightarrow[x \to +\infty]{} 0$$

Comme $\ln x \xrightarrow[x\to 0^+]{} -\infty$ et $\frac{1}{x} \xrightarrow[x\to 0^+]{} +\infty$, on obtient par produit

$$F(x) \xrightarrow[x \to 0^+]{} -\infty$$

G. Peltier

$$G: x \mapsto \sqrt{\frac{x-5}{2x+3}}$$

G(x) a un sens si et seulement si $\frac{x-5}{2x+3} \ge 0$. Faisons un tableau de signes :

x	-∞		$-\frac{3}{2}$		5		+∞
x-5		_		_	0	+	
2x+3		_	0	+		+	
$\frac{x-5}{2x+3}$		+		_	0	+	

Ainsi,

$$D_G = \left] -\infty, -\frac{3}{2} \right[\cup [5, +\infty[$$

Ensuite, G est dérivable en tout point x tel que $\frac{x-5}{2x+3} \neq 0$, donc l'ensemble de dérivabilité de G est

$$D:=\left]-\infty,-\frac{3}{2}\right[\cup]5,+\infty[$$

Soit $x \in D$. Alors

$$G'(x) = \frac{1}{2\sqrt{\frac{x-5}{2x+3}}} \times \frac{(2x+3)-2(x-5)}{(2x+3)^2}$$
$$= \frac{1}{2}\sqrt{\frac{2x+3}{x-5}} \times \frac{13}{(2x+3)^2}$$

On constate que G'(x) > 0 car $x \neq -\frac{3}{2}$. Ainsi,

x	-∞		$-\frac{3}{2}$		5		+∞
G'(x)		+		/////		+	
G(x)	$\frac{1}{\sqrt{2}}$	7	+∞	111111	0	7	$\frac{1}{\sqrt{2}}$

Justifions les limites:

$$\sqrt{\frac{x-5}{2x+3}} = \sqrt{\frac{1-\frac{5}{x}}{2+\frac{3}{x}}} \xrightarrow[x \to +\infty]{} \sqrt{\frac{1}{2}}$$

Idem pour la limite en $-\infty$. Enfin,

$$x-5 \xrightarrow[x \to -\frac{3}{2}]{} - \frac{13}{2}$$

$$\xrightarrow{1} \xrightarrow[x \to -\frac{3}{2}, \quad x < -\frac{3}{2}]{} - \infty$$

Ainsi, la limite du produit est $+\infty$, et cela ne change pas quand on compose par une racine carrée.

$$H: x \mapsto (2x)^{-x}$$

 $H(x)=e^{-x\ln(2x)}$ a un sens si et seulement si 2x>0, donc $D_H=\mathbb{R}_+^*$. H est dérivable sur \mathbb{R}_+^* comme composée et produit de fonctions dérivables sur \mathbb{R}_+^* . Pour tout $x\in\mathbb{R}_+^*$,

$$H'(x) = \left(-\ln(2x) - x\frac{2}{2x}\right)e^{-x\ln(2x)} = -\left(\ln(2x) + 1\right)e^{-x\ln(2x)}$$

$$H'(x) > 0 \iff -(\ln(2x) + 1) e^{-x\ln(2x)} > 0$$
 $\iff \ln(2x) + 1 < 0$
 $\iff \ln(2x) < -1$
 $\iff 0 < 2x < e^{-1}$
 $\iff x < \frac{e^{-1}}{2}$
car $e^{-x\ln(2x)} < 0$
car exp et \ln sont strictement croissantes

x	0		$\frac{1}{2}e^{-1}$		+∞
H'(x)		+	0	_	
H(x)	1	7	$\exp\left(\frac{1}{2}e^{-1}\right)$	\searrow	0

Justifions les limites. Comme

$$-x \xrightarrow[x \to +\infty]{} -\infty$$

$$\ln(2x) \xrightarrow[x \to +\infty]{} +\infty$$

on a par produit

$$-x\ln(2x) \xrightarrow[x\to +\infty]{} -\infty$$

et donc

$$e^{-x\ln(2x)} \xrightarrow[x \to +\infty]{} 0$$

De plus, par croissances comparées

$$x\ln(2x) = x\ln 2 + x\ln x \xrightarrow[x\to 0^+]{} 0 + 0 = 0$$

Ainsi,

$$e^{-x\ln(2x)} \xrightarrow[x\to 0^+]{} e^{-0} = 1$$