Concours blanc MPSI

Durée : 4 heures. Calculatrices non autorisées. Toute affirmation non triviale doit être justifiée.

Problème 1 : Analyse

L'objectif de ce problème est d'étudier le comportement d'une suite $(u_n)_{n\in\mathbb{N}}$, définie au début de la partie B. La partie E étudie une suite $(I_n)_{n\in\mathbb{N}}$ définie à partir de $(u_n)_{n\in\mathbb{N}}$.

Partie A – Résultats préliminaires

Les questions de cette partie sont indépendantes et permettent d'établir des résultats susceptibles d'être utilisés dans la suite du problème.

- 1) Donner les valeurs exactes de ch(ln 3) et sh(ln 3) sous forme de nombres rationnels (mis sous forme irréductible).
- 2) On rappelle la définition de la fonction tangente hyperbolique : pour tout $x \in \mathbb{R}$, $\operatorname{th}(x) = \frac{\operatorname{sh}(x)}{\operatorname{ch}(x)}$. Exprimer la dérivée de th uniquement avec la fonction ch, en justifiant le résultat.
- 3) Soit k un réel positif ou nul. Déterminer une primitive sur \mathbb{R} de la fonction

$$f_k: x \mapsto \frac{1}{1+kx^2}$$

- 4) Soit $x \in \mathbb{R}_+$ et $n \in \mathbb{N}$. Montrer que $(1+x)^n \ge 1 + nx$
- 5) Soit $n \in \mathbb{N}$. Résoudre sur \mathbb{R} le problème de Cauchy : $\begin{cases} y' + n \operatorname{th}(t) y = 0 \\ y(0) = 1 \end{cases}$
- 6) Déterminer le développement limité à l'ordre 3 en 0 de la fonction th.

Partie B – Introduction de la suite $(u_n)_{n\in\mathbb{N}}$

Pour tout entier naturel n, on pose

$$u_n = \int_0^{\ln 3} \left(\frac{1}{\operatorname{ch}(x)}\right)^n dx$$

- 7) Justifier que le terme général u_n est bien défini pour tout $n \in \mathbb{N}$, et que $(u_n)_{n \in \mathbb{N}}$ est à termes positifs.
- 8) Calculer u_0 et u_2 .
- 9) Calculer u_1 .

Partie C – Sens de variation et convergence de $(u_n)_{n\in\mathbb{N}}$

- 10) Établir que $(u_n)_{n\in\mathbb{N}}$ est monotone.
- 11) Montrer que $(u_n)_{n\in\mathbb{N}}$ admet une limite finie, qu'on notera ℓ . Donner un encadrement de ℓ .
- 12) Prouver que

$$\forall n \in \mathbb{N}$$
 $u_{n+2} = \frac{4 \times 3^n}{(n+1)5^{n+1}} + \frac{n}{n+1} u_n$

On pourra procéder par intégration par parties.

Partie D – Calcul de la limite de $(u_n)_{n\in\mathbb{N}}$

- **13)** Prouver que : $\forall x \in \mathbb{R}$ $\operatorname{ch}(x) \ge 1 + \frac{x^2}{2}$.
- **14**) En déduire que pour tous $n \in \mathbb{N}$ et $x \in \mathbb{R}$,

$$\operatorname{ch}^n(x) \ge 1 + n \frac{x^2}{2}$$

- 15) Par ce qui précède, déterminer une suite $(\alpha_n)_{n\in\mathbb{N}^*}$ telle que pour tout $n\in\mathbb{N}^*$, on a $0\leq u_n\leq\alpha_n$. On devra préciser le terme général α_n .
- 16) En déduire que $\ell = 0$.

Partie E – Étude d'une série alternée

On pose pour tout $n \in \mathbb{N}$:

$$I_n = \sum_{k=0}^{n} (-1)^k u_k$$
 et $v_n = \int_0^{\ln 3} \frac{1}{\operatorname{ch}^{n-1}(x) (1 + \operatorname{ch}(x))} dx$

2

- 17) Soit $q \in \mathbb{R}$ et $n \in \mathbb{N}$. Calculer la somme $\sum_{k=0}^{n} (-1)^k q^k$.
- **18)** Soit $x \in [0, \ln 3]$. Pour tout $n \in \mathbb{N}$, calculer la somme $\sum_{k=0}^{n} \frac{(-1)^k}{\operatorname{ch}^k(x)}$.
- **19)** Exprimer I_n en fonction de v_{n+1} et de v_0 .
- **20)** Montrer que pour tout entier naturel $n: 0 \le v_n \le u_n$. En déduire la limite de $(v_n)_{n \in \mathbb{N}}$.
- **21)** Décomposer en éléments simples sur $\mathbb R$ la fraction $\frac{X^2+1}{X(X+1)^2}$
- **22)** Calculer v_0 à l'aide du changement de variable $u = e^x$.
- **23)** En déduire la limite de la suite $(I_n)_{n\in\mathbb{N}}$.

Problème 2 : Algèbre, matrices magiques

On appelle matrice semi-magique de $\mathcal{M}_3(\mathbb{R})$ toute matrice $A = (a_{ij})_{i,j \in [\![1,3]\!]}$ dont les coefficients vérifient les égalités suivantes :

$$a_{11} + a_{12} + a_{13} = a_{21} + a_{22} + a_{23} = a_{31} + a_{32} + a_{33}$$

= $a_{11} + a_{21} + a_{31} = a_{12} + a_{22} + a_{32} = a_{13} + a_{23} + a_{33}$

On note $\mathbb S$ l'ensemble des matrices semi-magiques de $\mathcal M_3(\mathbb R)$ et on pose $\sigma(A)$ la valeur commune à ces six sommes.

On définit les matrices J, K et L par

$$J = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \qquad K = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix} \qquad L = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}$$

1) Généralités

- a) Interpréter les six sommes sur les coefficients qui apparaissent dans la définition de S.
- b) Vérifier brièvement que les matrices J, K et L sont des matrices semi-magiques.
- c) Montrer que si A et B sont deux matrices semi-magiques, alors pour tous réels λ , μ la matrice $\lambda A + \mu B$ est semi-magique, et

$$\sigma(\lambda A + \mu B) = \lambda \sigma(A) + \mu \sigma(B)$$

2) Étude de S

- a) Montrer que S est un sous-groupe de $\mathcal{M}_3(\mathbb{R})$.
- b) Soit $A \in \mathcal{M}_3(\mathbb{R})$. Calculer AJ et JA. Montrer que

$$A \in \mathbb{S} \iff \exists \lambda \in \mathbb{R} \quad AJ = JA = \lambda J$$
 (*)

De plus, montrer que lorsque cette équivalence est vérifiée, alors $\lambda = \sigma(A)$.

- c) En déduire que pour toutes matrices semi-magiques A et B, la matrice AB est semi-magique et $\sigma(AB) = \sigma(A)\sigma(B)$.
- d) En déduire que S est un sous-anneau de $\mathcal{M}_3(\mathbb{R})$.
- e) Soit $A \in \mathbb{S} \cap GL_n(\mathbb{R})$. Montrer à l'aide de (*) que $\sigma(A) \neq 0$, que $A^{-1} \in \mathbb{S}$ et déterminer $\sigma(A^{-1})$ en fonction de $\sigma(A)$.
- f) Réciproquement, soit $A \in \mathbb{S}$ telle que $\sigma(A)$ est non nul. Peut-on conclure que A est inversible?

On appelle **matrice magique** de $\mathcal{M}_3(\mathbb{R})$ toute matrice $A = (a_{ij})_{i,j \in [\![1,3]\!]}$ qui est semi-magique et dont les coefficients vérifient les égalités supplémentaires suivantes :

$$\sigma(A) = a_{11} + a_{22} + a_{33} = a_{13} + a_{22} + a_{31}$$

On note M l'ensemble des matrices magiques de $\mathcal{M}_3(\mathbb{R})$.

On vérifie aisément que les résultats trouvés aux questions 1.b) et 1.c) se généralisent aux matrices magiques et on pourra utiliser ces résultats dans la suite.

3) Etude de M

- a) Interpréter les deux sommes supplémentaires qui apparaissent dans la définition de M.
- b) Montrer que M est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$. Est-ce un sous-anneau de $\mathcal{M}_3(\mathbb{R})$?
- c) Montrer que pour tout $A \in \mathbb{M}$, on a

$$\sigma(A) = 3a_{22} \tag{**}$$

- **d)** Montrer que si $A \in \mathbb{M}$, alors $A^{\top} \in \mathbb{M}$.
- e) On note $\operatorname{Sym}(\mathbb{M})$ l'ensemble des matrices symétriques de \mathbb{M} . En utilisant (**), montrer que $\operatorname{Sym}(\mathbb{M}) = \operatorname{Vect}(J, K)$.
- f) On note Asym(M) l'ensemble des matrices magiques antisymétriques. Déterminer Asym(M).
- g) Montrer que toute matrice magique s'écrit de manière unique comme la somme d'une matrice magique symétrique et d'une matrice magique antisymétrique.
- h) En déduire que $\mathbb{M} = \{ \alpha J + \beta K + \gamma L \mid \alpha, \beta, \gamma \in \mathbb{R} \}.$