Programme de colles n°6

semaine du 7 au 11 novembre

Notions vues en cours

Chapitre 5 : Fonctions usuelles (en complément de la semaine dernière) :

- Taux d'accroissement ; tangente en un point : équation, représentation graphique
- Liens entre sens de variation d'une fonction et le signe de sa dérivée
- Étude d'une fonction (cf encadré en bas de la page 9 du polycopié)
- Dérivée k-ième, fonction de classe \mathcal{C}^1
- Dérivations de fonctions de $\mathbb R$ dans $\mathbb C$: même formules de dérivation que de $\mathbb R$ dans $\mathbb R$
- Théorème de la bijection
- Fonctions usuelles (et leurs propriétés) : logarithmes (ln et \log_a), exponentielles (e^x , a^x avec a > 0), puissances $(x \mapsto x^n \text{ avec } n \text{ dans } \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R})$
- Croissances comparées (démonstration non exigible)
- Fonctions trigonométriques (et leurs propriétés) : cos, sin, tan, arccos, arcsin, arctan, ch, sh, th
- Dérivation de e^g avec $g: \mathbb{R} \to \mathbb{C}$

Questions de cours

Cette semaine, AUCUNE démonstration n'est exigible.

- 1. Énoncé du théorème de la bijection
- 2. Ensemble de définition, de dérivabilité, expression de la dérivée de deux fonctions parmi

$$\ln \quad \exp \quad x \mapsto a^x \quad x \mapsto x^n \quad x \mapsto x^{-n} \quad x \mapsto x^{\frac{1}{n}} \quad x \mapsto x^{\alpha} \qquad \qquad n \in \mathbb{N}^* \quad \alpha \in \mathbb{R}$$

On prendra garde à distinguer les cas $n \in 2\mathbb{N}$ et $n \in 2\mathbb{N} + 1$.

3. Ensemble de définition, de dérivabilité, expression de la dérivée et représentation graphique de deux fonctions parmi

Pour ch, sh, th, on devra également donner la définition.

- 4. Des formules de trigonométrie (deux items parmi les trois suivants, au choix de l'examinateur) :
 - (a) Formules $\cos(a \pm b)$, $\sin(a \pm b)$, $\tan(a \pm b)$
 - (b) Formules $\cos a \cos b$, $\sin a \sin b$, $\sin a \cos b$
 - (c) Formules de duplication : $\sin(2x)$, ainsi que les trois expressions de $\cos(2x)$ en fonction de 1, $\sin^2 x$, $\cos^2 x$